Let G be a connected undirected graph with N nodes and L links. For each i ∈ {1, . . . , N} define di as the degree of nodei, being the number of links it is attached to. We take a random walk over the graph according to the following CTMC: Whenwe visit a new node i, we stay there for an independent and exponentially distributed time with rate vi. We then choose tovisit a new node j independently and uniformly over all neighboring nodes.a) Make a guess about the steady state distribution for each state i ∈ {1, . . . , N} in terms of di and vi.b) Verify your guess with the detail equations.c) For the same graph, consider a discrete time Markov chain (DTMC) where, every slot t, we move to a new nodeindependently and uniformly over all neighboring nodes. Show that the discrete time detail equations ÀiPij = ÀjPji aresatisfied for a particular guess probably mass function Ài for i ∈ {1, . . . , N}.d) Consider the following modification to the DTMC in part (c): We transition according to the same DTMC. However,we stay in each state i for an independent random amount of time that has a general distribution with mean E [Ti]. It canbe shown that the fraction of time in each state i is proportional to ÀiE [Ti], where Àiis the steady state distribution of thediscrete time chain. Verify this is true for the special case when Tiis exponentially distributed with rate µi. It follows that thesteady state results for the CTMC in part (b) are the same even if the time in each state is not exponentially distributed
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more